Making Professional Quality Scientific Figures: Part II – Advanced Image Editing

RESOURCES:

http://www.people.fas.harvard.edu/~draft/thesisworkshop/

- PDF of this presentation
- PDF of instructions for image manipulation
- Sample images used in the demos

d Test in vitro

Tips on Raster File Formats

- TIF, PNG "lossless" compression
 - Use TIFF for your master file (original)
 - Save a new copy as TIF or PNG each time you edit/manipulate
- JPEG "lossy" compression
 - smaller file size (~ 10 fold) with high quality compression
 - Final PDF will automatically convert images to JPG by default

High quality JPG 11 KB

Low quality JPG 5 KB

Editing Image Files

A pixel is a block with a grayscale intensity value (0-255 for an 8-bit image)

Fill the Dynamic Range

We can view a graph of all the pixel values (pixel histogram)

We can adjust the how the pixel values to help the viewer see more 'information'

A raster image is simply a grid of pixels

We make it easier for the eye to distinguish differences in the data

How to adjust the levels:

Open the image in Photoshop or GIMP

The third triangle: Gamma

How to I Ensure My Images are 220 ppi?

- Normal printer: **<u>220 ppi/dpi</u>** (pixels/dots per inch)
- Slideshows (projects/monitors) 72 ppi

Easy as 1-2-3

STEP 1: Adjust image resolution to 220 ppi and determine the size of your image

DEMO

- Changes in ppi = changes in image dimensions.
- NO CHANGE the pixel number

STEP 2: Insert 220 ppi Image into PPT

Use 9 inches
Use 6.5 inches
Figure Legend

That will give you a 1 inch border in final document

Insert or drag your 220 ppi image into PPT (don't copy/paste!)

- The image will appear at proper printing resolution and dimensions
 - o If the image is bigger than you need, see step 3 option A
 - \circ If the image is smaller than you need, see step 3 option B

STEP 3-A: Image is too big

Decrease the Image Dimension by removing pixels

Easy way:

• Drag/resize in powerpoint (using the bounding box)

1 inch

STEP 3-A: Image is too big

Decrease the Image Dimension by removing pixels

Easy way:

- Drag/resize in powerpoint (using the bounding box)
- Click 'Format Picture' > 'Compress' > 220 (printing), selected picture only

STEP 3-B: Image is too small

Increasing the Image Dimensions – need to 'add' pixels

1 inch

Note: If you are trying to add pixels to give your image better clarity/resolution (like a CSI-Miami zoom-in), its not going to work. Either recapture the image, or make the pixelated image bigger (see next step), which can be useful to see details that are there.

Step 3-B: Adding Pixels

If you're enlarging microscope pictures, don't add fake pixel information ("interpolate") your image when enlarging – you want to show the real data!

• **CAUTION**: Drag/resizing the bounding box in powerpoint will interpolate your image!

Use 'Nearest Neighbor' (Photoshop) or 'No Interpolation' (GIMP) to add pixels without blurring the image.
Reinsert the image into PPT.

Done.

Summary

- Use Photoshop or GIMP to adjust your image levels.
- Check/set the resolution of your image in Photoshop or GIMP
- Insert picture into Powerpoint (DO NOT COPY AND PASTE!)
- Scale your image down if you like (compress afterwards to remove excess pixels).
- If necessary, make your image bigger by adding pixels without interpolation in Photoshop or GIMP.